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1. SUMMARY 
 

The objectives of this work were to design, develop, and evaluate support for design of 
low-power hardware computer architectures at the Very Large Scale Integration (VLSI) 
level.   The objectives were realized by achieving complete design flow integration with 
commercial and open-source Electronic Design Automation tools.  The design flow takes 
as inputs a high-level system-level architecture description, along with area, critical path 
delay, and power dissipation constraints. Based on the System on Chip architecture 
description and design constraints, the tools automatically generate synthesizable 
Hardware Descriptive Language (HDL) models, embedded memories, and custom 
components to implement the specified VLSI architecture.   Simulation results showed 
significant improvement over previous approaches with respect to power dissipation and 
leakage reduction. 
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2. INTRODUCTION 
 

Advances in parallel processing, Very Large Scale Integration (VLSI) technology, and 
computer architecture have led to high performance computer systems. Modern 
microprocessors are capable of executing over several hundred million floating-point 
operations per second, and supercomputer systems, capable of executing more than a 
trillion operations per second, are currently being developed [1].  Along with this, greater 
reliance is being placed on the simulation results produced by these computer systems. 
Computer simulations play an important role in almost every aspect of science and 
engineering, including research in computational fluid dynamics, weather forecasting, 
VLSI circuit design, manufacturing, and modeling in chemistry, physics, and biology.  

The large number of arithmetic operations and the reliance placed on computer systems 
make it extremely important to design, evaluate, and implement architectures efficiently 
for a given objective.  Unfortunately, most computer systems are complicated by the 
requirement to provide significant processing performance while still maintaining 
adequate environmental constraints for power dissipation and power/clock distribution.  
This is further complicated by the fact that many systems are now resorting to an 
architecture with more than one core in parallel in order to increase its performance 
capabilities.  These multi-core systems use complex interconnection networks to 
parallelize code and increase latency performance.   To overcome the challenge of 
designing complex architectures, several software tools for creating silicon 
implementations of computer architectures and digital systems have been developed. Any 
one tool covers just a small part of the simulation and design process needed to create a 
complete chip design.  A design flow is a combination of tools to cover a significant 
portion of the design process. These tools include design flows for sub-micron 
technologies targeted at education repositories, such as Metal Oxide Semiconductor 
Implementation Service (MOSIS) generic technology tool sets for corporate instruction, 
and research-targeted, variation-aware nanometer generic technologies, and limited 
public-domain toolsets using open-source Electronic Design Automation (EDA) tools. 

The main disadvantage of EDA tools for the implementation of VLSI architectures is that 
they don’t readily support flexible design flows for the implementation of high 
performance architectures. Corporations that specialize in the design and implementation 
of high performance computer architectures usually have an inordinate number of 
engineers at their disposal in order to target systems for a given performance metric.  
However, sharing or dissemination of the EDA tool integration methods and specific 
design flows corporations use to create a desired computer architecture objectives are not 
available for the general public, making further improvements upon computer 
architectures difficult or impossible to reproduce.  More importantly, many corporations 
can afford to sponsor application engineers (AE), from the EDA software vendors, on site 
to assist in completing a given design objective.   

According to International Technology Roadmap for Semiconductors (ITRS) 2003 [2], 
two of the most daunting System on Chip (SOC) challenges are (1) design productivity 
improvement by more than 100% per technology node and (2) management of power 
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especially for low-power, wireless, multimedia applications. Current design tools and 
flows, however, require excessive time, effort and design costs to achieve the power, 
area, and performance requirements of future SOC solutions. The semiconductor industry 
needs new design techniques, tools and flows for high-level synthesis that provide the 
ability to quickly develop and evaluate complex SOC solutions. These techniques, tools 
and flows should provide accurate area, delay, and power estimates from high-level SOC 
architecture descriptions to facilitate design space exploration and the evaluation of new 
power management techniques. They should also provide support for a wide variety of 
components (e.g., standard cell and custom circuits, programmable processors, embedded 
memory, and buses) and facilitate design reuse. Furthermore, the design tools and flows 
should be well documented, easy to use, and publicly available to encourage new 
research and innovation in SOC design.   

Presently, there are several tools available including the SimpleScalar architecture 
simulator [3] and Watch Power Analysis Framework [4] for estimating the performance 
or power dissipation of processors and their memory system. These tools, however, do 
not facilitate accurate modeling of complete SOC solutions, which often include 
hardware accelerators, peripherals, and bus interfaces. Furthermore, since these tools do 
not provide access to information about the underlying circuit and silicon 
implementation, the accuracy with which they can model dynamic and static power 
dissipation is significantly limited. Consequently, accurate modeling and evaluation of 
complex systems has been marked as a significant challenge for system architecture and 
digital system designers by a recent National Science Foundation panel [5].  Ultimately, 
the NSF panel argues that simulation and benchmarking will require a leap in capability 
within the next few years to maintain ongoing innovations in computer systems.   

This paper details the research and development of high-level synthesis tools for System-
on-Chip platforms, specifically targeted at IBM 65 nm Complementary Metal Oxide 
Semiconductor (CMOS) technologies, that (1) provide the ability to efficiently integrate 
embedded memories, low-power/high-performance circuits and processors, and 
communications structures, (2) combine synthesis and layout information to accurately 
estimate area, delay, and power from high-level SOC architecture descriptions, (3) 
facilitate rapid design-space exploration of  SOC solutions, and (4) are well-documented, 
easy-to-use, and publicly available for the Air Force Research Laboratory (AFRL) 
personnel.    It is also anticipated that many of the outcomes of this project will aid in the 
development and deployment of future silicon architectures for any user that employs 
trusted foundry fabrication capabilities. 

This paper describes a number of techniques and design flows related to lowering power 
dissipation within the design of computer architectures resulting from work done at the 
AFRL in Rome, New York from 2007 until 2011.  In this paper, a low-power digital 
standard-cell library and design flow is discussed for IBM’s 65 nm CMOS technology 
and its use in the creation of low-power structures in the design of high-performance 
computer architectures.  Several techniques, both circuit and architecture-based, are 
discussed and results are shown using the design flow implemented for this research.  
Specifically, multi-threshold CMOS (MTCMOS) is implemented within the library and 
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compared versus a library supplied by ARM that only works with regular threshold 
voltage transistors. 

This report is organized as follows.  Section 3 discusses the overall effort and the 
background behind power dissipation and its relationship to design flows for nanometer 
technologies. .  Section 3.1 discusses  a standard-cell library in IBM CMOS 10SF 65 nm 
feature sizes for complex CMOS technologies, (10SF denoted the specific design 
technology for 2010 fabrication runs) and the library’s effect on routing methodology 
choice.  Section 3.2 discusses some of the architecture ideas utilized to lower the total 
power dissipation within digital circuits.  Section 4 discusses the results from these 
design choices and compares them versus the IBM-supplied ARM library.  Finally, 
Section 5 presents some brief conclusions. 
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3. METHODS, ASSUMPTIONS and PROCEDURES 
 

The design and fabrication process used to produce silicon structures for state of the art 
computer architectures is long and complicated. During the 1970s and up through the 
early 1990s, most new computer architectures created were for ever higher performance 
application specific  systems or for high performance general processors [5]. In the late 
1980’s, Field Programmable Gate Arrays (FPGAs) were created.  Although FPGAs are 
easy and far cheaper to design than most traditional computer architectures, they 
consume significantly more area, delay and power for a given performance [6]. 
Consequently, for computer applications which demand a high amount of performance, 
traditional but high design complexity architectures continue to be used. 

The demand for increased speed, decreased energy consumption, improved memory 
utilization, and better compilers for processors has become paramount to the design of the 
next generation of computer architectures.  To make matters worse, the traditional 
challenges of designing digital devices with semiconductor technology has drastically 
changed with the introduction of deep submicron technology.  Designs that have long 
been expanding in complexity through Moore’s Law have run up against severe 
technological limitations below 130 nm.  Where once it was easy to improve a design by 
scaling the minimum feature size of a transistor, new basic features are now required.   
Quality simulation adds new levels of design complexity. 

Because silicon technologies are so small, designs can now implement millions and even 
billions of transistors on a reasonably small die.  Unfortunately, this leads to power 
density and total power dissipation that is at the limits of what packaging, cooling, and 
other infrastructure can support [8].  More importantly, in CMOS technologies below 90 
nm, leakage current almost matches or surpasses that of dynamic power, making power 
dissipation a major obstacle to designing complex SOC designs. 

Although power dissipation complicates the design process for integrated circuits it does 
not necessarily mean that designs cannot be efficiently accomplished.  Energy 
consumption and clock speed are closely linked and engineering choices or sacrifices are 
normally required if a design requires a lower power factor or high clock rates. 

Today some of the highest power microprocessors can dissipate close to 150 watts in an 
area close to 1 cm square [8].  In fact, as the International Technology Roadmap for 
Semiconductors (ITRS) predicted,  the power for microprocessor reached a maximum of 
198 watts in 2008 [2].  For virtually all applications, including general-purpose computer 
architectures, reducing the power consumed by an SOC is essential to allow new features 
and add performance to improve technology.  Consequently, it is important to understand 
how power consumption affects SOC designs to improve upon power efficiency. 

The total power consumption of a digital logic circuit consists of two major factors.  The 
first part consists of dynamic power which is the power that is consumed when a device 
is active.  Typically, dynamic power is consumed when devices are active and are 
switching back and forth.  That is, they are based on what is supplied at the input of a 
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circuit.  If, for example, a circuit has lots of activity (e.g. within a router for the Internet), 
it will typically consume lots of dynamic power.  Conversely, applications that only 
switch on during critical events, (e.g. sensors for abnormal events within automobiles), 
typically consume very low amounts of dynamic power.   

Dynamic power’s main impetus is the amount of switching that occurs during an event.  
Since most CMOS circuits are composed of layers of Silicon Dioxide, which is an 
excellent charge storage material, a majority of the switching power stems from the 
power that is charged and discharged in the process of turning the transistor on and off, 
respectively.  This results in dynamic power with a squared dependence on the voltage: 

     (1) 

where CL is the load capacitance, VDD is the supply voltage, f is the frequency of the 
system clock, and Ptrans is the probability of an output transition.  In addition to switching 
power, internal power also contributes to dynamic power.  Internal power is related to the 
speed with which CMOS gate is turned from on to off and back to on.  This switching 
causes both NMOS and PMOS transistors to be ON momentarily resulting in a short 
circuit or “crowbar” current.  Although the short circuit period can be small, it can 
contribute to the total dynamic power if the input is ramped up too quickly [10].  Internal 
or short-circuit power can be described as: 

     (2) 

where tsc is the time duration of the short-circuit current and Ipeak is the total internal 
switching current.  Although short-circuit current will not be discussed in this paper, for 
lower-power consumption it is important to make sure gates are not floating on an output 
when turning on certain power-gating circuits.  That technique is discussed later, in the 
results section.   

The second major power factor, static power dissipation, is the power consumed when 
devices are powered on but no signals are changing values.  In the past, static power 
dissipation, which is mainly dominated by leakage current in a gate, was either non-
existent or did not significantly impact a design.  However, as the voltage and minimum 
feature size of a transistor became smaller, the pronounced effect of leakage within a gate 
made static power dissipation greater than dynamic power dissipation below the 90nm 
technology node [9].   

In the past, traditional designs resorted to lowering the power supply voltage to get an 
exponential decrease in the power.  This decision has been substantiated by Equation 1’s 
power dissipation being dependent on the square of the supply voltage.   The real 
problem is that lowering the supply voltage causes the drive or drain to source current of 
a transistor to decrease.  The drain to source current can be approximated by: 

     (3) 
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where μ is the carrier mobility, Cox is the gate capacitance, W and L are the dimensions of 
the transistor, VT is the threshold voltage, and VGS is the gate-source voltage.  Since deep 
submicron technologies have low supply voltages, having a low threshold voltage allows 
CMOS designs to maintain good performance [10].   Unfortunately, as the threshold 
voltage gets smaller, an exponential increase in the sub-threshold leakage current (ISUB) 
occurs. 

The subthreshold leakage current is the dominant element of static power dissipation.  It 
occurs when a CMOS gate is not turned completely off.  A good approximation to the 
subthreshold equation is shown in Eq. 4, where k is Boltzmann’s constant, T is the 
temperature in kelvin, q is the charge of an electron, and n is a function of the device 
fabrication process.  The subthreshold leakage current for sub-90 nm transistors is a 
major source of concern within current technologies, such as the IBM CMOS10SF 65 nm 
technology originally considered for this work.   

    (4) 

Eq. 4 indicates that sub-threshold leakage, which is the predominant factor in static 
power dissipation, depends exponentially on the difference between VGS and VT.  
Therefore, as technology scales the power supply and VT down to limit the dynamic 
power, leakage power grows exponentially, as was shown in [9].  To make matters worse, 
sub-threshold voltage current increases exponentially with temperature, which also 
complicates the process for low-power design.   

Transistors are usually defined by their length and width, however, the length usually 
establishes the minimum feature size of a transistor [6].  As technology moves towards 
smaller feature sizes, the thickness of the oxide below the gate of a transistor also 
decreases in thickness.  Unfortunately, in current semiconductor processes the thickness 
of the oxide is only several atoms thick.  Consequently, the thinness of the oxide allows a 
current that tunnels through the gate towards the channel of a transistor, so much so that 
in current sub 90 nm technologies, gate leakage can be nearly 1/3 as much as sub-
threshold leakage [8].  In order to reduce the gate leakage, some manufacturers have 
resorted to high-k dielectric materials, such as Hafnium, to keep the gate leakage in check 
[11].   

Another technique to reduce the leakage current is to use multi threshold voltage 
transistors.  Using this technique, high VT cells can be utilized wherever performance 
goals allow the power dissipation to be kept in check.  And, lower VT cells can be used 
on a critical path to meet a specific timing.  Specifically, having transistors that can 
utilize different threshold voltages allows the reduction of the substrate current, as shown 
in Eq. 4.  The technology for IBM’s CMOS10LPe (2010 Low Power) 65 nm process 
utilized for this work enabled the use of Regular VT, High VT, and Low VT transistors to 
reduce the gate leakage [12]. 
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3.1 IBM Standard Cell Libraries 

A high priority of any computer architecture created in silicon is to facilitate “paper to 
product” in an efficient and pragmatic method. To accomplish this goal many designs are 
created through complex and elaborate software programs that write netlists or a 
structural description of silicon objects by means of a concise software system. When 
engineers first started creating these silicon structures, the number of transistors was 
small and integration that existed within a system design was simple and straightforward. 
However, as the complexity of computer architectures increased, many of the software 
tools became extremely elaborate and complex but narrowly focused on one or just a few 
aspects of the complete architecture design. Therefore, engineers must expend significant 
energy and time to design efficient streams of design tools, or design flows, to 
accomplish the task of producing Very Large Scale Integration (VLSI) architectures. 

Many of these design flows involve translating structural or behavioral descriptions of 
computer architecture into a working silicon mask layer that can be fabricated.  Although 
this process is just an evolution of processing one netlist to another, the process has 
dramatically changed from early designs involving several hundred transistors to current 
SOC designs that encompass close to or exceed 1 billion transistors [14].  To make 
matters worse, power and performance optimization issues have complicated the entire 
process [15]. 

Standard-cell designs involve taking pre-made layout elements, such as an AND or 
NAND gate, and having software stitch the elements together via placing each routing 
wire between known pins.  Early layout editors, such as the Magic Layout Editor, had 
built-in routers to allow designers to avoid having to worry about laying out wire between 
two points [16].  However, as more points and pins were created, the performance cost 
for a given route increased and there was a dramatic need for more efficient algorithms to 
deal with congestion and optimization [17].   

Although the use of standard-cell libraries is not new, their implementation into a design 
flow has not been widely studied, mainly because much of the design process has been 
become a black art.  In fact, many of the standard cells from initial creators can only be 
utilized by instantiating or inserting their layout at the foundry when a design is 
complete. Details of the standard cell’s characteristics are not given to designers outside 
the foundry.  A designer, who wants to create a new layout library, must learn all the ins 
and outs of a given standard cell by trial and error.  Unfortunately, most designers in 
industry cannot afford this time consuming process and, thus, resort to using libraries that 
are purchased from companies that specialize in this area.   

Fortunately, there are several limited design flows available, often free of charge from 
educational institutions.  Unfortunately, most of these design flows only contain a limited 
number of standard cells and components, and are not geared toward complete SOC-
based design. Virginia Tech offers an extensive library for the Taiwan Semiconductor 
Manufacturing Corporation, TSMC 0.25 μm process [18]. Although these standard-cell 
libraries are helpful at learning some of the basics, they tend to skip over many of the 
details of more proprietary, optimized commercial standard-cell libraries. Furthermore, 
since current design flows are often not well integrated with design tools for high-level 
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synthesis or design space exploration, there is a significant barrier to high-quality 
research and education in this area.  This project began with adapting standard-cells using 
the IBM CMOS10SF 65 nm process while utilizing the author’s experience in creating 
design flows both academically [19-22] and with industrial partners Cadence Design 
Systems, Synopsys, and Mentor Graphics. 

The IBM CMOS 10SF is a 65 nm fabrication process created by IBM.  This process 
provides 9 metal layers (M1, M2, M3, M4, B1, B2, B3, EA, EB) plus LB (for transfer off 
chip) to DV (glass cut).  The technology is a nanometer-based technology that gives 
high-performance, while still trying to maintain somewhat low power designs.  IBM 
originally created this process for static random access memory, digital logic, mixed-
signal, and mixed-voltage input/output applications [23].    Although this technology is 
robust, it presents certain challenges, since its operating voltage is relatively low at a VDD 
of 1.0 Volt.   

Standard-cell libraries usually utilize two methodologies for determining where a pin can 
route.  The first methodology is called “grid-less placement and routing” which treats 
every routing point as a Cartesian coordinate [23], [24].  Although this method 
accomplishes the task well with high-performance computers capable of processing 
billions of operations per second, its algorithm has a high processing overhead.  
Consequently, grid-less placement and routing tends to be avoided in commercial 
placement and routing software tools.  Although grid-less placement and routing works 
well for grid-based placement and routing, implementation is an NP-hard problem that 
can cause problems for cases when limited area or high amounts of constraints are given 
for a problem [24]. On the other hand, “grid-based placement and routing” works well 
with most tools and can handle large numbers of transistors with a surprising amount of 
efficiency.    Therefore, for this work, grid-based placement and routing was chosen to 
minimize the complexity as well as have the ability to interface to commercial-based 
EDA tools. 

Grid-based placement and routing is organized into grids that are chosen by design.  It is 
important that there is a sufficient size for each grid so that wires can follow the grid and 
connect around each junction.  For this paper, it is assumed that connections are 
orthogonal, however, they can easily be non-orthogonal with more complexity added to 
the placement and routing algorithms.  Standard-cell libraries are designed such that each 
cell is set at the same height.  Although cells can be at different heights, placement and 
routing can get more congested with this approach.  Since most libraries are designed 
such that they have many gates within them, including ones with different drive 
strengths, it is important to make the height of the cell relatively large.  However, making 
the height too large can cause low amounts of density within the design. 

Placement and routing algorithms work with two basic elements to create a connection.  
The first element is a contact, called a via, where a large majority of connections are 
between two metal layers.  The second element is wires, which connect between each pin 
or contact.  A contact or via is utilized to connect to a pin, which is either a final 
destination or beginning of a connection, or at an intermediate connection that may be 
part of a larger route.  To set the correct grid distance, or pitch, between two wires, it is 
important to factor the via and wire rules into the computation.  There are two basic rules 
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related to pitch.  The first pitch rule is called via-to-via distance and although it is a 
common definition for pitch, it can waste space between two wires that do not have a 
connection.  Consequently, for this project we chose a line-to-via pitch to allow the wires 
to be closer together and allow more routing within a given area.  Line-to-via is more 
common in industry.  Figure 1 shows an example of the two pitch designations. 

 

 
Figure 1.  Pitch Examples 

 

In this design process, all grids are assumed to be equal for both horizontal and vertical 
distances.  This was chosen to simplify the computation for each distance, however, 
many design flows use different dimensions for pitches in the 2D horizontal and vertical 
directions for individual metal layers.  To make the wires less congested, each wire in a 
layer is assumed to navigate either horizontally or vertically and subsequent layer wires 
are at 90 degrees, resulting in either HVH (Horizontal-Vertical-Horizontal) or VHV 
(Vertical-Horizontal-Vertical) routing.  In this work, odd metal layers are assumed to be 
routed horizontally (e.g. metal1), whereas, even metal layers are assumed to be routed 
vertically (e.g. metal4).  That is, a HVH routing methodology is utilized.   

Contacts or vias are usually connected so that they minimize the connection between two 
wires [6].   In order to save space it is preferable to have contacts, between metal layers 
that are more than one metal layer apart, aligned above each other regardless of the metal 
layer.  For example, if a route is to connect between metal4 and metal1, it would be 
easiest to have the connection happen straight downwards through the levels of metal 3 
and metal 2.  Because this connection happens on-top of each layer, it is called a stacked 
via.  In early designs, such as those with only 2-3 layers of metal, stacked vias were 
physically difficult to implement.  However, with newer technology and machinery to 
fabricate integrated circuits, stacked vias are extremely common.  The IBM CMOS 10SF 
65 nm process has stacked vias, therefore, the design is chosen such that contacts or vias 
can be situated on top of each, as shown in Figure 2. 
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Figure 2.  Stacked Vias 

 

Although grids are common in standard-cell designs, designers of common standard-cell 
libraries tend to forget to keep the grids in multiples of each other for each subsequent 
metal layer.  Consequently, some metal layers (e.g. metal1 and metal3) may not align 
and, therefore, a stacked via cannot be connected nicely without a jog.  Although a jog 
will work, it tends to increase the capacitance within a design.  Therefore, it is highly 
advisable, as with this design, to keep each metal direction (i.e. metals in the same 
direction – metal1, metal3, metal5, …) within a multiple of each other to allow each 
metal layer to overlap for stacked vias if needed.  For example, if M3:M1 layer have a 
track pitch ratio of 11:8, both horizontal tracks would seldom be on top of each other 
making it difficult or even impossible to create a M3  M1 contact.  Therefore, for any 
standard-cell library track pitch ratios should use simple ratios such as 1:1, 1:2, 2:3, or 
3:4 between adjacent same direction routing tracks.  Figure 3 shows an example of a 1:2 
M3  M1 ratio. 

 

Figure 3.  Example Pitch Definitions 

 

In this design, the tracks were designed to have 300 nm pitch distances both vertically 
and horizontally.  To allow an ample amount of room between both power rails, 9 grid 
distances were chosen between VDD and GND rails allowing a 2.70 μm cell height.  This 
height allows simpler gates to be designed while not wasting a lot of space.  However, the 
space is just enough to allow more complicated gates like a Full Adder cell, to easily be 
integrated within the rails.   
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The IBM CMOS 10SF 65 nm CMOS technology has the ability to adapt to many 
different parameters.  One particular parameter is called the metal stack and allows a 
customer to choose the number of metal layers for 1X, 2X, and 4X metal layers within 
the context of a design.  Since it is easy to add more layers later, the stack can easily be 
extended to more metal layers.   

The pitch definition is chosen such that it always has enough give-and-take to allow extra 
routing between the layers, but still overlap to allow stacked vias.  The cell's width 
resolution (multiples of 0.x um) is determined by the contact CA (CA width + chosen CA 
spacing). The CA width is 0.09 µm and the CA spacing is 0.21μm giving a resolution of 
0.3 μm. The other constraint is that the cells’ width needs to be multiples of 0.2µm to get 
rid of the gaps between cells. Due to rule 203aR in the IBM design manual, the minimum 
CA spacing is 0.16 μm (center to center = 0.25µm) [12]. This plus the CA width = 0.16 
μm + 0.09 μm = 0.25 μm and, therefore, in this work 0.3 μm is chosen. Nevertheless rule 
203 says spacing can be as small as is 0.105 μm, so it might be possible to select 0.2 μm 
resolution (CA width + chosen CA spacing = 0.195) however, 0.3 μm was chosen just to 
make sure there is enough room for a route. 

The metal pitch rules come in two forms: one is designed minimum and the other is 
considered a conservative rule denoted by appending a R after the rule (e.g. Rule 203R).  
IBM recommends that all conservative rules be utilized, therefore, this work chose to use 
the conservative R rules [12].  Consequently, the metal pitch was defined by a via-to-line 
distance assuming ½ the via distance on one side and ½ the metal line.  For example, for 
metal1, the pitch is defined as: 

  (5) 

which gives 

    (6) 

As stated before, to keep the M1  M3 ratios simple along with the other layers, a 2:3 
pitch was chosen which augments this distance from 0.24 μm to 0.30 μm, just to be 
conservative.  The same procedure was completed for the other layers.  The final values 
for pitch are shown in Table 1.  It is important to understand that the values in Table 1 
can be easily augmented to add more metal layers within the stack. 

Once a pitch was defined, a standard-cell library and its design flow were created.  
Unfortunately, many tools still rely on different file formats to set up the geometry to 
allow all placement and routing to be done efficiently.  In order to allow the standard-cell 
library to be easily defined and implemented, an automatic standard-cell library 
generation tool called Synopsys Cadabra was utilized.  Cadabra takes an architecture 
description of a cell, defined as a spice netlist, and generates layout based on a defined 
rule set.  Although the automatic library generation is efficient, the rules still need to be 
added manually and tested for several different scenarios to see if they work correctly.  
However, if a designer adequately defines the pitch, as explained previously, the job of 
defining the rules within the automatic layout generation is easier to implement.   
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Table 1.  IBM CMOS10SF 65 nm Pitch Definitions 

Metal 
Layer 

Direction Pitch 
[μm] 

Ratio 

M1 H 0.30 - 

M3 H 0.20 2:3 

M5 H 0.20 2:3 

M2 V 0.20 - 

M4 V 0.20 1:1 

M6 V 0.20 1:1 

 

The design flow shown in Figure 4 was then integrated with parameters cells provided by 
IBM.  Cadence Design System’s Virtuoso was used for layout creation and schematic 
entry.  However, the design flow was designed to work with Synopsys and Cadence 
Design System synthesis engines.  The standard-cell library was also created with 
baseline cells within its library, so that Synopsys DesignWare Intellectual Property could 
also be utilized and integrated within a design [25].   

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  Proposed Design Flow using Commercial-based EDA tools 

Cadence Design Systems’ SOC Encounter was utilized for place & route, and Mentor 
Graphics’ Calibre was used for Design Rule Checking, Electrical Rule Checking, Layout 
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versus Schematic, and Parasitic Extraction (PEX).  The PEX was extremely important for 
power dissipation estimation, since knowledge of the capacitance in the wire was 
required to adequately address the total static and dynamic power dissipation within a 
design.   

The design flow was planned to easily integrate within the Process Design Kit (PDK) that 
contains all the Parameterized Cells or p-cells within the CMOS 10SF library.    More 
importantly, Regular Voltage Transistors, Low Voltage Transistors, and High Voltage 
Transistors were all included in the library amounting to a 93 cell library that was 
completely characterized for power and delay.  This allowed simulations to accurately 
predict power dissipation and its associated propagation delay for various computer 
architectures.   

To add to the robustness of the standard-cell library, six custom parts were also included 
that allowed memory storage to be integrated within the design structure.  Each memory 
device was designed to be a robust register file with fast decoding and fast access. The 
six register files were all sized to provide a cycle time of 2 ns and also have several read 
and write ports to allow simultaneous reading and writing in common within 
microprocessors.  Figure 5 shows the layout of a single read and write port 32-bit, 32-
word register file designed for this library.  Each register file was designed to have no 
Design Rule Check (DRC) violations and completely verify through Layout Versus 
Schematic (LVS) checks. 

 

Figure 5.  32-bit x 32 word Single Write/Read Port Layout 
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3.2 Architecture Design Decisions for Lower Power Dissipation  

Although power dissipation is an important factor within the design of computer 
architectures, choosing technology that impacts switching activity or utilizing low-
leakage transistors is not the only option for the pragmatic designer.  If designers are 
going to be successful at obtaining their goals, it is important to utilize complete 
architectures for lower power dissipation.  It was also found to be important to have 
robust and repeatable scripts that allowed designs to be analyzed and properly. 

In 2008, although the standard-cell library was created and appropriately characterized 
there were questions related to the leakage that this technology could produce.    To offset 
concerns and potentially limit losses, changes in the technology were enacted to move 
towards a low-power technology, IBM CMOS 10LPe.  Although the 10SF and 10LPe 
technologies are similar, they had significantly different design rules, thus, potentially, 
causing problems with the standard-cell designs.  To offset these problems, standard-cell 
and memory libraries from Virage Logic were acquired.  Regardless of the standard-cell 
library and design rule changes, the problem related to design flow integration remained 
to be explored and solved. 

The instruction command sequence in EDA tools can be complicated.  For example, 
Cadence Design Systems had over 3500 pages of text references for many commands 
that were actually either outdated, retired, or just repetitive.  This can complicate the 
structure in which EDA tools are employed.  For example, some commands can be non-
existent or even be limited in their execution, because they are obsolete.   

To simplify the process, commands were emulated based on Cadence Design System 
examples called the Foundation Flow Template System.  The Foundation Flow is a 
derived set of current commands that allow basic structures to be repeated without the 
problems caused by outdated or obsolete command structures.  Although the Foundation 
Flow scripts are well written, they are not incorporated with commands to target a 
specific design task or to obtain a power figure.  Therefore, the Foundation Flows were 
heavily modified in Tcl to be robust, easy to edit, and repeatable with the IBM 
CMOS10LPe design library. 

The main structure of this design flow allows decisions for low-power dissipation to be a 
healthy design choice and facilitates accurate simulation.  The key element of this new 
flow is the use of the public-domain tool Makefile to aid in a repeatable sequence of steps 
within the backend design process.  The basic flow structure is broken down into nine Tcl 
programs that run in succession.  The nine Tcl programs are shown in Table 2. 

It is important to emphasize that the new scripts are easily configurable and can be 
augmented for specialized instructions, such as bump-cell insertion in flip-chip designs.  
To add extra scripts, modifications are added to the setup.tcl file to post-process after 
each subsequent Tcl script.  For example, if a user wanted to run a script after place.tcl, 
there is a location in setup.tcl to run a post-place.tcl, provided it is available.  The 
setup.tcl contains default parameters, such as pitch and location of Layout Extraction 
Format files.  A secondary Tcl script called init.tcl was written which contains routines to 
help with power rail adjustments and additions.   
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Table 2.  Basic Foundation Flow Script Flow (in run order) 

Program Task 

Init.tcl Main initialization and Floor 
planning 

Place.tcl Placement and Partitioning of 
design 

Pre-cts.tcl Pre Clock-To-Synthesis 
Optimization 

Cts.tcl Clock-To-Synthesis (CTS)  

Post-cts.tcl Post CTS Fixing 

Route.tcl Global/Detail Routing 

Postroute.tcl Post route Optimization and Hold 
fixing 

Postroute_si.tcl SI Hold Fixing and Optimization 

Signoff.tcl Final signoff timing and verification 

 

The scripts were tested on several design structures and sample netlists of various degrees 
of complexity.  The key element to any of the scripts is that they were designed to be 
simple and easy to use for any design.  That is, any design could be deployed and 
reloaded from any part of the design flow.  For example, if a design had several errors 
within the route stage, the design could be loaded at the stage before the route stage (i.e., 
postcts.tcl), and errors could be corrected and integrated within the flow.  In fact, this 
scenario of modifications had been previously been proposed for design flows to get the 
best optimizations within a design for a particular constraint [26].  Figure 6 demonstrates 
a sample design that has been placed and routed through the scripts as well as verified 
through DRC and LVS. 

A script was also written to allow subsequent tools to adequately address power and 
energy consumption.  The key to creating these results originally comes from the 
simplicity and repeatability of the original scripts created within this grant.  Another key 
finding is that the scripts not only allow power results to be easily computed, they also 
allow many designs to be integrated into a stable set of design scripts and numbers to be 
targeted for a design.  Currently, the scripts were designed for both the Synopsys and 
Cadence Design System (CDS) toolsets allowing mixing of program flows and vendor-
driven EDA interactions. 
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Figure 6.  Place/Routed 500 MHz MIPS Processor Using Proposed Design 
Flow 
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4. RESULTS AND DISCUSSION 
 

The design flow was created in such a way that environmental variables were utilized to 
enable it to be installed anywhere.  For example, all the libraries refer to an 
environmental variable called $OSU_IBM65 which points to the release directory.  The 
library created for this research, as well as the library created by ARM for the IBM 
CMOS 10SF 65 nm technology was located in this directory. As stated previously, the 
ARM library does not invoke any low threshold voltage transistors and, thus, could 
potentially consume significantly more power.   

Scripts were designed to work with the design flow, so that any design could be easily 
created from a HDL design into a mask layout.  All standard-cell designs and memory 
elements were created using scripts that either generated a place and route design or 
initiated a language within the Cadence Design System tools to create a memory array.   

 As previously stated, power dissipation is an important element within any computer 
architecture, however, the computation of power can be difficult to compute because of 
the complexity produced by current designs.  Consequently, the design flow presented 
here has several different power level estimation tools that can either estimate the power 
during synthesis with no parasitic extraction of the wires (e.g. through Synopsys 
PowerCompiler or PrimeTime) or computed more accurately using an extracted SPEF 
file (e.g. through Synopsys nanosim).  Scripts were created that allowed all designs to be 
tested effortlessly for timing, area, and power parameters.  More importantly, all the 
scripts can be modified, so that power, delay, or area could be targeted as an optimized 
constraint for a given architecture.  Table 3 shows some typical numbers achieved for the 
IBM CMOS10LPe 65 nm developed design flow.   

  Table 3.  Area/Delay Results for Sample Designs 

Design 
Synthesis Post-Synthesis 

Gates Delay 
[ns] 

Area 
[μm2] 

Delay 
[ns] 

IEEE 
754R 
Floating-
Point 
Adder 

4,493 2.00 24,115 3.070 

MIPS 
R2000 4,984 1.05 22,563 2.122 

64-bit 
CLA 568 1.99 2,613 2.287 
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 All designs were created and completed through the use of scripts created for this project 
to interface the HDL definitions.  Also, many of the designs in Table 2 were created 
using Synopsys DesignWare Intellectual Property engines giving the flow extended 
processing capabilities. 

Although the design flow created for this work was easy to apply for any computer 
architecture, the real power is the ability to apply the design parameters for achieving 
lower power dissipation for designs that have multiple viewpoints, such as memory and 
processors.  The scripts were successful in rapidly creating a design for a July 2010 
fabrication run using the IBM CMOS10LPe library and several memory blocks from 
Virage Logic.  The design was taped out at 125 MHz and preliminary tests indicated the 
design powered up correctly.  In addition to the processor design created at the Air Force 
Research Laboratory, the device also included an asynchronous Field-Programmable 
Gate Array created by Cornell University. 

 

Figure 7. Final Layout for July 2010 T using IBM CMOS 10LPe Technology 
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5. CONCLUSIONS 
 

This report describes research that was conducted for the Air Force Research Laboratory 
in designing low power libraries for computer architectures.  With the combination of 
architecture and circuit-based enhancements, significant improvements over previous 
techniques can be seen.  

The design flow was designed to work out-of-the-box and allow anyone to design fast 
and efficient designs with the IBM CMOS 10SF or CMOS10 LPe 65 nm libraries.  More 
importantly, it allows multiple Electronic Design Automation tools to be efficiently and 
effortlessly utilized to create designs and verify their timing and/or power constraints.  
There is still more significant work that can be done by modeling better power variations 
as well as incorporating design choice what-if scenarios.  Future work will be ongoing in 
this area and produce an environment that can be integrated easily with any trusted 
foundry customer.  

Over the course of three years, specific achievements resulted in the following items: 

• Design flows created that were enhanced for Cadence Design System and 
Synopsys based EDA toolsets. 

• A vibrant and modular standard-cell library and six register files for the IBM 
CMOS10SF technology. 

• Design Verification scripts for timing, voltage, and power considerations. 

• Modular Foundation-based script vehicles that allow rapid development of 
Silicon structures. 

• Tape-Out procedures and methodologies for the IBM CMOS10LPe technology. 
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LIST OF ACRONYMS 
 

  
ACT Asynchronous Circuit Tools 

AFPGA Asynchronous Field Programmable Gate Array 

AFRL Air Force Research Laboratory 

ASIC Application Specific Integrated Circuit 

CB Connection box 

CMOS Complementary Metal Oxide Semiconductor 

DARPA Defense Advanced Research Projects Agency 

DRC Design Rule Checker 

EDA Electronic Design Automation 

FIR Finite Impulse Response 

FPGA Field Programmable Gate Array 

ITRSI/O International Technology Roadmap for Semiconductors 
Input/Output 

I/OIP Input/Output Intellectual Property 

IPLB Intellectual Property Logic block 

LBLUT Logic block Lookup Table 

LUT Lookup Table 

LVS Layout versus Schematic 

MOSISSBSRAM Metal Oxide Semiconductor Implementation Service Switch 
box Static Random Access Memory 

SBSRAMVHDL Switch box Static Random Access MemoryVery High Speed 
Integrated Circuit Hardware Description Language 

SRAMVHDLVLSI 
Static Random Access MemoryVery High Speed Integrated 
Circuit Hardware Description Language Very Large Scale 
Integration 

TSMCVHDLVLSIVPR 
Taiwan Semiconductor CorporationVery High Speed 
Integrated Circuit Hardware Description Language Very Large 
Scale Integration Versatile Place and Route 

VHDLVLSIVPR 
Very High Speed Integrated Circuit Hardware Description 
Language Very Large Scale Integration Versatile Place and 
Route 

VLSIVPR Very Large Scale Integration Versatile Place and Route 

VPR Versatile Place and Route 
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